31 research outputs found

    Investigating human-perceptual properties of "shapes" using 3D shapes and 2D fonts

    Get PDF
    Shapes are generally used to convey meaning. They are used in video games, films and other multimedia, in diverse ways. 3D shapes may be destined for virtual scenes or represent objects to be constructed in the real-world. Fonts add character to an otherwise plain block of text, allowing the writer to make important points more visually prominent or distinct from other text. They can indicate the structure of a document, at a glance. Rather than studying shapes through traditional geometric shape descriptors, we provide alternative methods to describe and analyse shapes, from a lens of human perception. This is done via the concepts of Schelling Points and Image Specificity. Schelling Points are choices people make when they aim to match with what they expect others to choose but cannot communicate with others to determine an answer. We study whole mesh selections in this setting, where Schelling Meshes are the most frequently selected shapes. The key idea behind image Specificity is that different images evoke different descriptions; but ‘Specific’ images yield more consistent descriptions than others. We apply Specificity to 2D fonts. We show that each concept can be learned and predict them for fonts and 3D shapes, respectively, using a depth image-based convolutional neural network. Results are shown for a range of fonts and 3D shapes and we demonstrate that font Specificity and the Schelling meshes concept are useful for visualisation, clustering, and search applications. Overall, we find that each concept represents similarities between their respective type of shape, even when there are discontinuities between the shape geometries themselves. The ‘context’ of these similarities is in some kind of abstract or subjective meaning which is consistent among different people

    Schelling Meshes

    Get PDF

    Coastal-trapped waves with finite bottom friction

    Get PDF
    Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Dynamics of Atmospheres and Oceans 41 (2006): 172-190, doi:10.1016/j.dynatmoce.2006.05.001.Coastal-trapped waves with finite-amplitude bottom friction are explored. “Finite-amplitude” in this context means that the bottom stresses are large enough to change the wave modal structure. The importance of bottom friction is measured by the nondimensional number r/(ωh), where r is a bottom resistance coefficient, ω is the wave frequency and h is the water depth. Increasing bottom drag causes free wave modes to adjust by having their amplitude maxima for alongshore current translate offshore to the point that, with relatively large bottom stress, the alongshore current variance is trapped entirely on the slope, even though pressure variations remain substantial right up to the coast. In conjunction with these adjustments, wave frequency, hence propagation speed, varies and the wave damping is usually less than would be expected based on a weak-friction perturbation calculation. Stronger density stratification increases wave damping, all else being the same. A mean alongshore flow can strongly affect modal structure and wave damping, although general trends are difficult to discern. Results suggest that bottom friction may cause an observed tendency for lower frequency alongshore current fluctuations to become relatively more important with distance offshore.This work was supported by National Science Foundation grant number OCE02-27679

    Determining crystal structures through crowdsourcing and coursework

    Get PDF
    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality
    corecore